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Abstract: Protonation of trialkylamines in the presence of the non-protonable 
anion tetraphenyiborate allows to crystallize [F+N@-H...NR3] salts with 
trimethylamine, quinticlidine, diazabicyclooctane or pyridine. Their single crystal 
structures are rationalized by SCF and force-field calculations. 

Protonation of organic bases to salts containing the non-protonable anion tetraphenylborate 
enforces unusual intra- and intermolecular interactions such as the planarization of the colourless 
tetrapyridylpyrazine to its mimetically yellow-coloured dication salt&4 

+2HCI + 2 Li~[B%GH,M 

-2Li’CP 
(1) 

From acetone solutions of trialkylamines or pyridine, their hydrochlorides and lithium tetraphenyl- 
borate, the title salts - including those from different amines - can be crystallized: 2 
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These compounds5 are represented here by tetraphenylborate7 salts of trimethylammonium- 
trimethylamine- and quinucliinium-quinuclidine-catiovs (Figure 1). which due to their identical 
subunits contain prototype N@- H.--N hydrogen bridges and, therefore, allow to approximate their 
molecular dynamics< ( Figure 2). 

The low-temperature structures (Figure 1) exhibit hydrogen bridges N*-H.--N with an N.,.N 
distance of only 264 pm; according to a search in the Cambridge Structural Databas&sa-e only few 
shorter ones are known395e such as 253 pm in diprotonated tetrapyridylpyrazine (1). The subunits 
CaN.-*NC3 are in a staggered conformation and, especially for quinuclidinium-quinuclidine (Figure 1: 
C), the diierent dihedral angles co(CN..-NC) of 500 and 7Oa prove, in close analogy to organosilicon 
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Figure 1. Molecular structures of selected2 trialkylammonium-ttialkylamM?-tetraphenylborates. (A) 
Trimethylammonium salt in side view and (B) lattice packing within a distorted octahedron of 
tetraphenylborate anions (shortest nonbondiig diience~ (pm): C 

Ph 
eng**CmethM 348,350,354, 

Cphenyl-..N 433, 439, 444, and B...N 598,617, 635). Essential d stances (pm) and ar#es (O) for 
the two Mependent molecules : H bridges N(H@)N 264/265 pm and 175o/l 730, (H )NC, 146, 
148, 149, NC, 144, 146, 150, CN(H@)C 110, 111, 112, CNC 106, 111, 114, CN...NC 51, 53. 56, 
64, 66, W/(1 8, 29, 39, 62, 90, 104). (C) Quinuclidinium salt: H bridge N(H@)N 264 pm and 
1790, (H@)NC 149, NC 148, CN (H@)C 109, 110, 110, CNC lOQ, 109, 110, CC 153, NCC 110, 
CCC 109, o(CN*-*NC) 50, 50. 52, 69, 69, 71, C~G(intramolecular) 372 - 400, 
(C)H~+.H(C)(intramolecular) 292 - 316 and anion with BC 165 and CBC 107-l 13. 

Figure 2. Distance-dependent potential cafculations for trimethyfammonium-ttimethyiamine cation based on 
the crystal structure data.6 (A) Double and single minima potentials of the bridge N@-H.--N for 
distances dNN varying between 260 and 250 pm, generated by moving the Ho center along 
the NN axis. All AM1 heats of formation have been cakulated with total geometry optimization of 
the units N(CH&, 3 and the barrier for dN”.N = 264 pm is estimated to be about 2.5 kJ mol’l .(B) 
MOM potential curves for torsions rp(CN...NC) at NN distances between 280 and 250 pm with 
the barrier for 264 pm (Figure 1) approximated to be about 1 kJ mol-l. 
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compounds such as [(CH3C)3Si]3Si-Si[Si(CH3)3]3, a considerable steric overcrowding: The 
distances C-G between the molecular halves of only 372 pm are 7 % within the van der Waals radii 
sum for two methyl groups -CH3)(H3C- of 4OOpm. The trimethylammonium-trimethylamine cations 
are enclosed within an octahedron of six anions [Be(CgH5)4] (Figure 1: 6) and the rather short 
intermObCub’ distances Cphenyl"'Cmethyf of only 348 pm suggest also for the lattice packing a 
stabilizing van der Waals-attraction within the effective Coulombic range B(e)-e.N(*) estimated to be 
about 600 pm. 

The threefold rotationally symmetric hydrogen bridge C3N@H...NC3 of the protonated 
bis(trimethylamine) cation is characterized by both semiempirical AM1 8a and MOM0 force-field 
calculations8b (Figure 2): By approaching the two subunits (H3C)3N@-H and N(CH3)3 from 1000 
pm to the N.-.N bonding distance of 264 pm (Figure 1: A), an AM1 heat of formation AAHfAM1 = -38 
kJ mol-1 results. Starting from the structure coordinates and with additional geometry-optimization, 
charges at the N centers of -.17 and at the H* center of +.33 are estimated. Comparison with 
analogous calculations3 for the pyridinium-pyridine cation [H5C5N)@-H..-NCgH5] show a smaller AA 

H~AM~ value, which corresponds to the larger experimental N---N distance of 270 pm5b and can be 
traced to the smaller negative charge at the nitrogen in neutral pyridine. qN(H5C5N) = -.14 vs. 
qN(R3N) = -.26. The distance-dependent AM1 calculations (Figure 2: A), suggest a change from 
double to single minimum only at about 250 pm and a barrier of about 2.5 kJ mol-l at the 
experimental N.N distance of 264 pm. Additional force-field calculations6b (Figure 2: B. based on 
empirical Lennard-Jones potentials, EvdW = c r-6 + d t-12) with experimentally calibrated 
parameters.8c have been performed for torsion angles o(CN-NC) between Oo and 1200 in loo- 
steps. Despite of the rather short and, in addition, sterically overcrowded bridges R3Ne-H---NR3, 
low barriers of only about 1 kJ mol-1 result for both cations and suggest a fully activated rotation at 
room temperature. For the methyl derivative, the minimum of the van der Waals energy is predicted 
at the experimental N=N distance of 264 pm (Figure 1: A) and, the structure, therefore, should be 
predominantly determined by the electrostatic H bridge component.9 

The use of non-protonable tetraphenylborate anions3 in crystallizing H-bridged 
bis(alkylamino)cations [R3N @-Hn*.NR3], [R3N@-H-.-NR2] and [R2N*-He-.NR2] can be widely 
applied to nitrogen compounds with u- and x-type N lone pairs and, therefore, will allow to 
investigate numerous novel H-bridged molecular aggregates. 
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